Naringenin-Zinc Oxide Nanocomposites Amalgamated Polymeric Gel Augmented Drug Delivery and Attenuated Experimental Cutaneous Candidiasis in Balb/c Mice: In Vitro and In Vivo Studies.
Chanti Babu KattaDeepankar BahugunaHarithasree VeerabommaSpandana GollapalliArbaz Sujat ShaikhNagesh A BhaleAmol G DikundwarVenkat Rao KakiPankaj Kumar SinghJitender MadanPublished in: AAPS PharmSciTech (2024)
Naringenin (NRG) inhibits the fungal 17β-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn 2+ ) to synthesize NRG-Zn 2+ nanocomposites. The particle size and ζ-potential of NRG-Zn 2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn 2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn 2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm 2 /h. The MIC 50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1β and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.
Keyphrases
- wound healing
- candida albicans
- drug delivery
- hyaluronic acid
- heavy metals
- reduced graphene oxide
- cancer therapy
- rheumatoid arthritis
- biofilm formation
- escherichia coli
- machine learning
- risk assessment
- soft tissue
- ionic liquid
- deep learning
- electronic health record
- solid phase extraction
- adipose tissue
- human health
- highly efficient
- artificial intelligence
- case control