Triazine Chalcogenones from Thiocyanate or Selenocyanate Addition to Tetrazine Ligands in Ruthenium Arene Complexes.
Lorenzo BonaldiMarco BortoluzziStefano ZacchiniGuido PampaloniFabio MarchettiLorenzo BiancalanaPublished in: Inorganic chemistry (2023)
The chemistry of 1,2,4,5-tetrazines has attracted considerable interest both from a synthetic and applicative standpoint. Recently, regioselective reactions with alkynes and alkenes have been reported to be favored once the tetrazine ring is coordinated to Re(I), Ru(II), and Ir(III) centers. Aiming to further explore the effects of metal coordination, herein, we unveil the unexplored reactivity of tetrazines with chalcogenocyanate anions. Thus, ruthenium(II) tetrazine complexes, [RuCl{κ 2 N -3-(2-pyridyl)-6- R -1,2,4,5-tetrazine}(η 6 -arene)] + (arene = p -cymene, R = H, [ 1a ] + , R = Me, [ 1b ] + , R = 2-pyridyl, [ 1c ] + ; arene = C 6 Me 6 , R = H, [ 1d ] + , R = Me, [ 1e ] + ; PF 6 - salts), reacted quantitatively and in mild conditions with M(ECN) salts (M = Na, K, Bu 4 N; E = O, S, Se). The addition of thiocyanate or selenocyanate to the tetrazine ligand is regioselective and afforded, via N 2 release, 1,2,4-triazine-5-chalcogenone heterocycles, the one with selenium being unprecedented. The novel ruthenium complexes [RuCl{κ 2 N -(2-pyridyl)}{triazine chalcogenone}(η 6 -arene)] 2a - e (sulfur), 3b , 3d , and 3e (selenium) were characterized by analytical (CHNS analyses, conductivity), spectroscopic (IR, multinuclear and two-dimensional (2D) NMR), and spectrometric (electrospray ionization mass spectrometry (ESI-MS)) techniques. According to density functional theory (DFT) calculations, the nucleophilic attack of SCN - on the tetrazine ring is kinetically driven. Compound 2b is selectively and reversibly mono-protonated on the triazine ring by HCl or other strong acids, affording a single tautomer. When reactions of chalcogenocyanates were performed on the 2,2'-bipyridine (bpy) complex [RuCl(bpy)(η 6 - p -cymene)] + , the chloride substitution products [Ru(ECN)(bpy)(η 6 - p -cymene)] + (E = O, [ 4 ] + ; E = S, [ 5 ] + ; E = Se, [ 6 ] + ) were obtained in 82-90% yields (PF 6 - salts). Combined spectroscopic data (IR, 1 H/ 13 C/ 77 Se NMR) was revealed to be a useful tool to study the linkage isomerism of the chalcogenocyanate ligand in [ 4 - 6 ] + .
Keyphrases
- density functional theory
- water soluble
- mass spectrometry
- liquid chromatography
- ionic liquid
- molecular dynamics
- molecular docking
- solid phase extraction
- high resolution
- ms ms
- magnetic resonance
- high performance liquid chromatography
- machine learning
- tandem mass spectrometry
- hepatitis c virus
- drug discovery
- single cell