Influence of Tantalum Addition on the Corrosion Passivation of Titanium-Zirconium Alloy in Simulated Body Fluid.
El-Sayed M SherifYassir A BahriHamad Fahad AlharbiMuhammad Farzik IjazIbrahim Abdullah AlnaserPublished in: Materials (Basel, Switzerland) (2022)
Ti-15%Zr alloy and Ti-15%Zr-2%Ta alloy were fabricated to be used in biomedical applications. The corrosion of these two alloys after being immersed in simulated body fluid for 1 h and 72 h was investigated. Different electrochemical methods, including polarization, impedance, and chronoamperometric current with time at 400 mV were employed. Also, the surface morphology and the compositions of its formed film were reported by the use of scanning electron microscope and energy dispersive X-ray. Based on the collected results, the presence of 2%Ta in the Ti-Zr alloy passivated its corrosion by minimizing its corrosion rate. The polarization curves revealed that adding Ta within the alloy increases the corrosion resistance as was confirmed by the impedance spectroscopy and current time data. The change of current versus time proved that the addition of Ta reduces the absolute current even at high anodic potential, 400 mV. The results of both electrochemical and spectroscopic methods indicated that pitting corrosion does not occur for both Ti-Zr and Ti-Zr-Ta alloys, even after their immersion in SBF solutions for 72 h.
Keyphrases