Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems.
Anjali RajwarSumit KharbandaArun Richard ChandrasekaranSharad GuptaDhiraj BhatiaPublished in: ACS applied bio materials (2020)
DNA nanotechnology is a unique field that provides simple yet robust design techniques for self-assembling nanoarchitectures with extremely high potential for biomedical applications. Though the field began to exploit DNA to build various nanoscale structures, it has now taken a different path, diverging from the creation of complex structures to functional DNA nanodevices that explore various biological systems and mechanisms. Here, we present a brief overview of DNA nanotechnology, summarizing the key strategies for construction of various DNA nanodevices, with special focus on three-dimensional (3D) nanocages or polyhedras. We then discuss biological applications of 3D DNA nanocages, particularly tetrahedral DNA cages, in their ability to program and modulate cellular systems, in biosensing, and as tools for targeted therapeutics. We conclude with a final discussion on challenges and perspectives of 3D DNA nanodevices in biomedical applications.