Sum-Frequency Vibrational Spectroscopic Study of the Cation-π Interaction: Amine and Guanidine.
Sokhuoy SamSiheon SungSona KremSohee ParkDong Soo HwangDoseok KimPublished in: The journal of physical chemistry. B (2022)
The cation-π interaction is an interaction between a positively charged cation and π electrons in an aromatic group of a molecule. It is considered to play key roles in signal transduction, stabilization of the protein structure, enzyme catalysis in biology, and wet adhesion and biomolecular condensation. In this study, octadecylguanidine hydrochloride (ODG) and octadecylamine (ODA) having guanidine and amine headgroups, respectively, are found to interact with π molecules (phenol or indole) as investigated by sum-frequency vibrational spectroscopy. ODG is unstable and does not form a neat monolayer on the water surface. However, after adding π molecules into subphase water, it becomes more stable against dissolution as evidenced by the appearance of its CH x peaks and a CH peak of the aromatic ring in the sum-frequency spectrum. Unlike ODG, ODA forms a stable monolayer on the water surface at a neutral pH. After adding π molecules into the solution, the amine-π interaction promotes the protonation of the amine headgroup and the penetration of the π molecules makes the ODA monolayer more disordered. Indole is found to be more effective in binding with the ODG as compared to phenol.