Protein X0P338, a GntR-type pleiotropic regulator for morphological differentiation and secondary metabolites production in Streptomyces diastatochromogenes 1628.
Chouqiang LiJuan WangHengyi LinYongyong ZhangZheng MaAndreas BechtholdXiaoping YuPublished in: Journal of basic microbiology (2022)
The nucleoside antibiotic, toyocamycin (TM) exhibits excellent potent activity against several phytopathogenic fungi. Despite its importance, little is known about key factors regulating TM biosynthesis and morphological differentiation in Streptomyces diastatochromogenes 1628. Based on proteomics data obtained from the analysis between wild-type (WT) S. diastatochromogenes 1628 strain and mutant strain 1628-T62 having a low yield of TM, we observed that the differentially expressed protein, X0P338, which was proposed to be a regulator of the GntR-family, exhibited a higher expression level in S. diastatochromogenes 1628. Therefore, in this study, to explore whether protein X0P338 was involved in morphological differentiation and biosynthesis of secondary metabolites, especially TM, the gene called the gntR sd -encoding protein X0P338 was cloned and overexpressed in WT strain 1628 and mutant strain 1628-T62, respectively. The results indicated that the overexpression of gntR sd enhanced TM production in both strain 1628 (120.6 mg/L vs. 306.6 mg/L) and strain 1628-T62 (15.6 mg/L vs. 258.9 mg/L). Besides, the overexpression of gntR sd had positive and negative effects on morphological differentiation in strain 1628 and strain 1628-T62, respectively. The results also showed opposite effects on tetraene macrolide production during the overexpression of gntR sd in strain 1628 and strain 1628-T62. Moreover, transcription levels of genes involved in morphological differentiation and secondary metabolites production were affected by the overexpression of gntR sd gene, both in strain 1628 and strain 1628-T62. These results confirm that X0P338 as a GntR-type pleiotropic regulator that regulates the morphological differentiation and biosynthesis of secondary metabolites, and especially has a positive effect on TM biosynthesis.