L-cysteine protective effects against platelet disaggregation and echinocyte occurrence in gentamicin-induced kidney injury.
Damir SuljevicMaja Mitrašinović-BrulićMuhamed FočakPublished in: Molecular and cellular biochemistry (2022)
Gentamicin (GM) is an aminoglycoside antibiotic that induces nephrotoxicity. GM also causes necrosis of cells in the renal proximal tubules, resulting in acute tubular necrosis, followed by acute renal failure. Morphological alteration of blood cells, leukocytes and platelets count, as well as biochemical effects of L-cysteine (Cys) and antibiotic gentamicin, in clinically healthy male Wistar rats, were studied. Rats were divided into four groups: control (injected with 0.9% saline i.p.), GM (80 mg/kg b.w.; gentamicin injected i.p.), Cys-GM (100 mg/kg b.w.; L-cysteine and 80 mg/kg b.w. gentamicin injected i.p.), and Cys-GM-Cys (administered double dosage of 100 mg/kg b.w. L-cysteine and 80 mg/kg b.w. gentamicin i.p.). Biochemical and hematological analyses were performed on blood samples taken six days after treatments. Total proteins, albumin concentration and A/G ratio were significantly lower in experimental groups. Cholesterol, triglycerides, urea, and creatinine concentrations were significantly higher in relation to control. GM-induced lymphocytopenia, thrombocytopenia and neutrophilia. Echinocytosis and platelet disaggregation were found in all GM-treated animals. GM caused renal injury which indirectly led to erythrocyte abnormalities, changes in platelet aggregation, decreased protein fractions, and increased lipid and nitrogen components. The results suggest that GM-induced renal injury leads to significant biochemical changes in blood plasma, erythrocyte membrane impairment which can consequently cause anemia. Therefore, Cys might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced renal injury and blood cell disorders.