Login / Signup

Development of cVSSI-APCI for the Improvement of Ion Suppression and Matrix Effects in Complex Mixtures.

Madison E PursellDaud SharifAnthony DeBastianiChong LiSandra MajutaPeng LiStephen J Valentine
Published in: Analytical chemistry (2022)
The new ionization technique termed vibrating sharp-edge spray ionization (cVSSI) has been coupled with corona discharge to investigate atmospheric pressure chemical ionization (APCI) capabilities. The optimized source was evaluated for its ability to enhance ion signal intensity, overcome matrix effects, and limit ion suppression. The results have been compared with state-of-the-art ESI source performance as well as a new APCI-like source. In methanol, the ion signal intensity increased 10-fold and >10-fold for cocaine and the suppressed analytes, respectively. The ability to overcome ion suppression was improved from 2-fold to 16-fold for theophylline and vitamin D2, respectively. For aqueous samples, ion signal levels increased by two orders of magnitude for all analytes. In both solvent systems, the signal-to-noise ratios also increased for all suppressed analytes. One example of the characterization of low-ionizing (by ESI or cVSSI alone) species in the presence of high-ionizing species by direct analysis from a cotton swab is presented. The work is discussed with respect to the advantages of cVSSI-APCI for direct, in situ, and field analyses.
Keyphrases
  • ms ms
  • low dose
  • ionic liquid
  • air pollution
  • particulate matter
  • solid phase extraction