Login / Signup

Phase fMRI defines brain resting-state functional hubs within central and posterior regions.

Zikuan ChenEbenezer DanielBihong T Chen
Published in: Brain structure & function (2021)
From a brain functional connectivity (FC) matrix, we can identify the hub nodes by a new method of eigencentrality mapping, which not only counts for one node's centrality but also all other nodes' centrality values through correlation connections in an eigenvector of the FC matrix. For the resting-state functional MRI (fMRI) data (complex-valued EPI images in nature), both magnitude and phase images are useful for brain FC analysis. We herein report on brain functional hubness analysis by constructing the FC matrix from phase fMRI data and identifying the hub nodes by eigencentrality mapping. In our study, we collected a cohort of 160 complex-valued fMRI dataset (consisting of magnitude and phase in pairs), and performed independent component analysis (ICA), FC matrix calculation (in size of 50 × 50) and FC matrix eigen decomposition; thereby obtained the 50-node eigencentrality values in the eigenvector associated with the largest eigenvalue. We also compared the hub structures inferred from FC matrices under different thresholding. Alternatively, we obtained the geometric hubs among p value the 50 nodes involved in the FC matrix through the use of harmonic centrality metric. Our results showed that phase fMRI data analysis defines the resting-state brain functional hubs primarily in the central region (subcortex) and the posterior region (parieto-occipital lobes and cerebella). The brain central hubness was supported by the geometric central hubness, which, however, is distinct from the magnitude-inferred hubness in brain superior region (frontal and parietal lobes). Our findings pose a new understanding of (or a debate over) brain functional connectivity architecture.
Keyphrases
  • resting state
  • functional connectivity
  • data analysis
  • big data
  • computed tomography
  • mass spectrometry
  • white matter
  • lymph node
  • deep learning
  • electronic health record
  • rectal cancer