MOFs-Derived Fusiform In2 O3 Mesoporous Nanorods Anchored with Ultrafine CdZnS Nanoparticles for Boosting Visible-Light Photocatalytic Hydrogen Evolution.
Hongli YangJiaqi TangYong LuoXiaoqiang ZhanZhao LiangLan JiangHuilin HouWeiyou YangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2021)
The development of efficient visible-light-driven photocatalysts is one of the critically important issues for solar hydrogen production. Herein, high-efficiency visible-light-driven In2 O3 /CdZnS hybrid photocatalysts are explored by a facile oil-bath method, in which ultrafine CdZnS nanoparticles are anchored on NH2 -MIL-68-derived fusiform In2 O3 mesoporous nanorods. It is disclosed that the as-prepared In2 O3 /CdZnS hybrid photocatalysts exhibit enhanced visible-light harvesting, improves charges transfer and separation as well as abundant active sites. Correspondingly, their visible-light-driven H2 production rate is significantly enhanced for more than 185 times to that of pristine In2 O3 nanorods, and superior to most of In2 O3 -based photocatalysts ever reported, representing their promising applications in advanced photocatalysts.