Diagnosis of Joubert Syndrome 10 in a Fetus with Suspected Dandy-Walker Variant by WES: A Novel Splicing Mutation in OFD1.
Siyuan LinpengJing LiuJianyan PanYingxi CaoYanling TengDesheng LiangZhuo LiLingqian WuPublished in: BioMed research international (2018)
Joubert syndrome (JBTS) is a clinically and genetically heterogeneous group of ciliary diseases. To date, 34 subtypes of JBTS have been classified due to different causative genes or extra clinical features. Most of them are autosomal recessive, while only the subtype 10 (JBTS10) is a quite rare X-linked recessive disorder caused by OFD1 mutations with few reports. In this study, by using whole exome sequencing (WES), a novel OFD1 splicing mutation (c.2488+2T>C) was identified in a male fetus with suspected Dandy-Walker variant (DWV) and syndactyly, for whom abnormal karyotype and pathogenic CNV have been excluded. This mutation was inherited from the mother who has experienced two similar pregnancies before. An abnormal skipping of exon 18 in OFD1 mRNA was confirmed by RT-PCR and sequencing. Result from quantitative RT-PCR also showed that total OFD1 mRNA in the index fetus was significantly lower than the control. After a combined analysis of genetic testing results and genotype-phenotype correlations, the novel mutation c.2488+2T>C in OFD1 was considered to be the genetic cause for the affected fetus. Thus the diagnosis should be JBTS10 rather than the primary clinical diagnosis of DWV. We report the first prenatal case of JBTS10 in Chinese population, which not only helps the family to predict recurrence risks for future pregnancies but also provides more information for understanding such a rare disease. The results also present evidence that WES is an effective method in prenatal diagnosis for those fetuses with Joubert syndrome.