Login / Signup

A comprehension on structure guided alignment dependent 3D-QSAR modelling, and molecular dynamics simulation on 2,4-thiazolidinediones as aldose reductase inhibitors for the management of diabetic complications.

Priyadarshi GautamPriya BishtAnupam GautamGhanshyam Das GuptaRajveer SinghSant Kumar Verma
Published in: Journal of biomolecular structure & dynamics (2023)
Aldose reductase is an oxo-reductase enzyme belonging to the aldo-keto reductase class. Compounds having thiazolidine-2,4-dione scaffold are reported as potential aldose reductase inhibitors for diabetic complications. The present work uses structure-guided alignment-dependent Gaussian field- and atom-based 3D-QSAR on a dataset of 84 molecules. 3D-QSAR studies on two sets of dataset alignment have been carried out to understand the favourable and unfavourable structural features influencing the affinity of these inhibitors towards the enzyme. Using common pharmacophore hypotheses, the five-point pharmacophores for aldose reductase favourable features were generated. The molecular dynamics simulations (up to 100 ns) were performed for the potent molecule from each alignment set (compounds 24 and 65) compared to reference standard tolrestat and epalrestat to study target-ligand complexes' binding energy and stability. Compound 65 was most stable with better interactions in the aldose reductase binding pocket than tolrestat. The MM-PBSA study suggests compound 65 possessed better binding energy than reference standard tolrestat, i.e. -87.437 ± 19.728 and -73.424 ± 12.502 kJ/mol, respectively. The generated 3D-QSAR models provide information about structure-activity relationships and ligand-target binding energy. Target-specific stability data from MD simulation would be helpful for rational compound design with better aldose reductase activity.Communicated by Ramaswamy H. Sarma.
Keyphrases
  • molecular docking
  • molecular dynamics simulations
  • molecular dynamics
  • type diabetes
  • dna binding
  • structure activity relationship
  • mass spectrometry
  • machine learning
  • climate change
  • dengue virus
  • anti inflammatory