Login / Signup

Nonnegative decomposition of functional count data.

Daniel BackenrothRussell Taki ShinoharaJennifer A SchrackJeff Goldsmith
Published in: Biometrics (2020)
We present a novel decomposition of nonnegative functional count data that draws on concepts from nonnegative matrix factorization. Our decomposition, which we refer to as NARFD (nonnegative and regularized function decomposition), enables the study of patterns in variation across subjects in a highly interpretable manner. Prototypic modes of variation are estimated directly on the observed scale of the data, are local, and are transparently added together to reconstruct observed functions. This contrasts with generalized functional principal component analysis, an alternative approach that estimates functional principal components on a transformed scale, produces components that typically vary across the entire functional domain, and reconstructs observations using complex patterns of cancellation and multiplication of functional principal components. NARFD is implemented using an alternating minimization algorithm, and we evaluate our approach in simulations. We apply NARFD to an accelerometer dataset comprising observations of physical activity for healthy older Americans.
Keyphrases
  • physical activity
  • electronic health record
  • machine learning
  • big data
  • peripheral blood
  • middle aged
  • data analysis