Machine learning for pattern detection in cochlear implant FDA adverse event reports.
Matthew Gordon CrowsonAmr F HamourVincent LinJoseph M ChenTimothy C Y ChanPublished in: Cochlear implants international (2020)
Importance: Medical device performance and safety databases can be analyzed for patterns and novel opportunities for improving patient safety and/or device design. Objective: The objective of this analysis was to use supervised machine learning to explore patterns in reported adverse events involving cochlear implants. Design: Adverse event reports for the top three CI manufacturers were acquired for the analysis. Four supervised machine learning algorithms were used to predict which adverse event description pattern corresponded with a specific cochlear implant manufacturer and adverse event type. Setting: U.S. government public database. Participants: Adult and pediatric cochlear patients. Exposure: Surgical placement of a cochlear implant. Main Outcome Measure: Classification prediction accuracy (% correct predictions). Results: Most adverse events involved patient injury (n = 16,736), followed by device malfunction (n = 10,760), and death (n = 16). The random forest, linear SVC, naïve Bayes and logistic algorithms were able to predict the specific CI manufacturer based on the adverse event narrative with an average accuracy of 74.8%, 86.0%, 88.5% and 88.6%, respectively. Conclusions & relevance: Using supervised machine learning algorithms, our classification models were able to predict the CI manufacturer and event type with high accuracy based on patterns in adverse event text descriptions.