Login / Signup

Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivum L.).

Gaëtan TouzyRenaud RincentMatthieu BogardStephane LafargePierre DubreuilAgathe MiniJean-Charles DeswarteKatia BeauchêneJacques Le GouisSébastien Praud
Published in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2019)
Environmental clustering helps to identify QTLs associated with grain yield in different water stress scenarios. These QTLs could be useful for breeders to improve grain yields and increase genetic resilience in marginal environments. Drought is one of the main abiotic stresses limiting winter bread wheat growth and productivity around the world. The acquisition of new high-yielding and stress-tolerant varieties is therefore necessary and requires improved understanding of the physiological and genetic bases of drought resistance. A panel of 210 elite European varieties was evaluated in 35 field trials. Grain yield and its components were scored in each trial. A crop model was then run with detailed climatic data and soil water status to assess the dynamics of water stress in each environment. Varieties were registered from 1992 to 2011, allowing us to test timewise genetic progress. Finally, a genome-wide association study (GWAS) was carried out using genotyping data from a 280 K SNP chip. The crop model simulation allowed us to group the environments into four water stress scenarios: an optimal condition with no water stress, a post-anthesis water stress, a moderate-anthesis water stress and a high pre-anthesis water stress. Compared to the optimal water condition, grain yield losses in the stressed conditions were 3.3%, 12.4% and 31.2%, respectively. This environmental clustering improved understanding of the effect of drought on grain yields and explained 20% of the G × E interaction. The greatest genetic progress was obtained in the optimal condition, mostly represented in France. The GWAS identified several QTLs, some of which were specific of the different water stress patterns. Our results make breeding for improved drought resistance to specific environmental scenarios easier and will facilitate genetic progress in future environments, i.e., water stress environments.
Keyphrases