Login / Signup

A Cellulosic Fruit Derived from Nerium oleander Biomaterial: Chemical Characterization and Its Valuable Use in the Biosorption of Methylene Blue in a Batch Mode.

Youssef O Al-GhamdiMahjoub JabliRaoudha SouryShahid Ali Khan
Published in: Polymers (2020)
Cellulose substrate waste has demonstrated great potential as a biosorbent of pollutants from contaminated water. In this study, Neriumoleander fruit, an agricultural waste biomaterial, was used for the biosorption of methylene blue from synthetic solution. Fourier-transform infrared (FTIR) spectroscopy indicated the presence of the main absorption peak characteristics of cellulose, hemicellulose, and lignin compositions. X-ray diffraction (XRD) pattern exhibited peaks at 2θ = 14.9° and 2θ = 22°, which are characteristics of cellulose I. Scanning electron microscopy (SEM) showed a rough and heterogeneous surface intercepted by some cavities. Thermogravimetric analysis (TGA) showed more than a thermal decomposition point, suggesting that Nerium fruit is composed of cellulose and noncellulosic matters. The pHpzc value of Nerium surface was experimentally determined to be 6.2. Nerium dosage, pH, contact time, dye concentration, and temperature significantly affected the adsorption capacity. The adsorption capacity reached 259 mg/g at 19 °C. The mean free energy ranged from 74.53 to 84.52 KJ mol-1, suggesting a chemisorption process. Thermodynamic parameters define a chemical, exothermic, and nonspontaneous mechanism. The above data suggest that Nerium fruit can be used as an excellent biomaterial for practical purification of water without the need to impart chemical functionalization on its surface.
Keyphrases