Physico-Mechanical and Durability Characterization of Eco-Ternary Cementitious Binder Containing Calcined Clay/Rice Husk Ash and Recycled Glass Powder.
Philbert NshimiyimanaUlrich Franck TamegheChristian RamadjiElodie Prud'hommeZengfeng ZhaoDésiré CompaoréAdamah MessanPublished in: Materials (Basel, Switzerland) (2023)
The objective of this study is to determine the influence of recycled glass powder (GP) on the physico-mechanical behavior and durability of a ternary cementitious binder containing calcined clay_metakaolin (MK) or rice husk ash (RHA). Different mortars were produced and characterized in fresh and hardened states. Reference mortars were produced using 100% cement CEM II/B-L 42.5R and 70% CEM + 30% MK or RHA. Test mortars were produced with the substitution of the MK or RHA with the GP and keeping the rate of the substitution at 30%; i.e., in ratios of 20:10, 15:15, and 20:10 of MK/RHA:GP. The water/binder weight ratio was maintained at 0.5, and the consistency of all mortars was adjusted using an admixture (superplasticizer/binder weight ratio of 0.75%). The substitution of MK and RHA with GP reduces the water demand to achieve the normal consistency of pastes and therefore increases the workability of mortars containing both binders CEM+MK+GP and CEM+RHA+GP. The substitution of MK and RHA with GP slightly reduces the compressive strength for both binders. The water-accessible porosity slightly increases for the substitution of MK and reduces for the substitution of RHA with GP. The mass losses after acid attack slightly increase with the substitution with GP, lower for the MK than the RHA up to 15% GP, but it remained far below that of 100% CEM. The results show that the substitution of MK and RHA with GP can improve the physical properties and durability of the mortars compared with that of 100% CEM, but it slightly decreases the mechanical properties due to the low rate of the pozzolanic reactivity of the GP. Further studies should seek to understand the reactivity behavior of the GP at the microstructure scale and therefore improve the mechanical performance of GP based mortar.