Breast Cancer Stem Cells Secrete MIF to Mediate Tumor Metabolic Reprogramming that Drives Immune Evasion.
Linlin YanMingming WuTianyu WangHui YuanXiao ZhangHuafeng ZhangTao LiVijay PandeyXinghua HanPeter E LobieTao ZhuPublished in: Cancer research (2024)
Reprogramming of energy metabolism exerts pivotal functions in cancer progression and immune surveillance. Identification of the mechanisms mediating metabolic changes in cancer may lead to improved strategies to suppress tumor growth and stimulate anti-tumor immunity. Here, it was observed that the secretomes of hypoxic breast cancer cells and breast cancer stem cells (BCSCs) induced reprogramming of metabolic pathways, particularly glycolysis, in normoxic breast cancer cells. Screening of the BCSC secretome identified MIF as a pivotal factor potentiating glycolysis. Mechanistically, MIF increased c-MYC-mediated transcriptional upregulation of the glycolytic enzyme aldolase C by activating WNT/β-CATENIN signaling. Targeting MIF attenuated glycolysis and impaired xenograft growth and metastasis. MIF depletion in breast cancer cells also augmented intratumoral cytolytic CD8+ T cells and pro-inflammatory macrophages while decreasing Tregs and tumor-associated neutrophils in the tumor microenvironment. Consequently, targeting MIF improved the therapeutic efficacy of immune checkpoint blockade (ICB) in triple-negative breast cancer. Collectively, this study proposes MIF as an attractive therapeutic target to circumvent metabolic reprogramming and immunosuppression in breast cancer.