Aggregation-induced fluorescence of the luminol-terbium(III) complex in polymer nanoparticles for sensitive determination of thrombin.
Yuan-Jun TongAn-Min SongLu-Dan YuRu-Ping LiangJian-Ding QiuPublished in: Mikrochimica acta (2019)
A fluorometric method is described for the determination of thrombin. Polymer nanoparticles containing the luminol-terbium(III) complex (luminol-Tb) were prepared where luminol acts as the bridging ligand, and Tb(III) acts as the central metal ion. Thrombin possesses a large number of electrons donating groups that coordinate with luminol-Tb. Following coordination, the rigidity of the linker is increased, and this decreases the non-radiative decay rate and induces an increase in fluorescence intensity at 430 nm. Hence, thrombin can be fluorometrically determined. The detection limit of thrombin is as low as 3.5 pM (at an SNR of 3). This is about 10 times lower than assays using an aptamer. The method was applied in the determination of thrombin in human serum via the standard addition method and gave satisfying results. Graphical abstractSchematic representation of the preparation of the luminol-Tb(III) complex in a nanoparticle host by the self-assembly of luminol and Tb(III) ions. Thrombin readily coordinates with the luminol-Tb(III) system, and this results in particle aggregation. The blue fluorescence of luminol increases strongly, and this effect provides the basis for fluorometric determination of thrombin.