Bioinspired Hierarchical Nanofabric Electrode for Silicon Hydrovoltaic Device with Record Power Output.
Beibei ShaoZheheng SongXin ChenYanfei WuYajuan LiCaicheng SongFan YangTao SongYusheng WangShuit-Tong LeeBao-Quan SunPublished in: ACS nano (2021)
Direct electricity generation from water flow/evaporation, coined hydrovoltaic effect, has recently attracted intense interest as a facile approach to harvest green energy from ubiquitous capillary water flow or evaporation. However, the current hydrovoltaic device is inferior in output power efficiency compared to other renewable energy devices. Slow water evaporation rate and inefficient charge collection at device electrodes are two fundamental drawbacks limiting energy output efficiency. Here, we report a bioinspired hierarchical porous fabric electrode that enables high water evaporation rate, efficient charge collection, and rapid charge transport in nanostructured silicon-based hydrovoltaic devices. Such an electrode can efficiently collect charges generated in nanostructured silicon as well as induce a prompt water evaporation rate. At room temperature, the device can generate an open-circuit voltage (Voc) of 550 mV and a short-current density (Jsc) of 22 μA·cm-2. It can output a power density over 10 μW·cm-2, which is 3 orders of magnitude larger than all those reported for analogous hydrovoltaic devices. Our results could supply an effective strategy for the development of high-performance hydrovoltaic devices through optimizing electrode structures.