Login / Signup

Scoparone alleviates Ang II-induced pathological myocardial hypertrophy in mice by inhibiting oxidative stress.

Linmao LyuJiazheng ChenWei WangTao YanJiamao LinHongmei GaoHui LiRuijuan LvFeng XuLijun FangYuguo Chen
Published in: Journal of cellular and molecular medicine (2021)
Long-term poorly controlled myocardial hypertrophy often leads to heart failure and sudden death. Activation of ras-related C3 botulinum toxin substrate 1 (RAC1) by angiotensin II (Ang II) plays a pivotal role in myocardial hypertrophy. Previous studies have demonstrated that scoparone (SCO) has beneficial effects on hypertension and extracellular matrix remodelling. However, the function of SCO on Ang II-mediated myocardial hypertrophy remains unknown. In our study, a mouse model of myocardial hypertrophy was established by Ang II infusion (2 mg/kg/day) for 4 weeks, and SCO (60 mg/kg bodyweight) was administered by gavage daily. In vitro experiments were also performed. Our results showed that SCO could alleviate Ang II infusion-induced cardiac hypertrophy and fibrosis in mice. In vitro, SCO treatment blocks Ang II-induced cardiomyocyte hypertrophy, cardiac fibroblast collagen synthesis and differentiation to myofibroblasts. Meanwhile, we found that SCO treatment blocked Ang II-induced oxidative stress in cardiomyocytes and cardiac fibroblasts by inhibiting RAC1-GTP and total RAC1 in vivo and in vitro. Furthermore, reactive oxygen species (ROS) burst by overexpression of RAC1 completely abolished SCO-mediated protection in cardiomyocytes and cardiac fibroblasts in vitro. In conclusion, SCO, an antioxidant, may attenuate Ang II-induced myocardial hypertrophy by suppressing of RAC1 mediated oxidative stress.
Keyphrases