Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet.
Mikkel A SørensenUrsula B HansenMauro PerfettiKasper S PedersenElena BartoloméGiovanna G SimeoniHannu MutkaStéphane RolsMinki JeongIvica Z IvkovićMaria RetuertoAna ArauzoJuan BartoloméStergios PiligkosHøgni WeiheLinda H DoerrerJoris van SlagerenHenrik Moodysson RønnowKim LefmannJesper BendixPublished in: Nature communications (2018)
Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.