Login / Signup

Sulfation Effects of Chondroitin Sulfate to Bind a Chemokine in Aqueous Medium: Conformational Heterogeneity and Dynamics from Molecular Simulation.

Shakuntala DhuruaMadhurima Jana
Published in: Journal of chemical information and modeling (2023)
The sulfation patterns and degree of sulfation of chondroitin sulfate (CS), an important class of glycosaminoglycans (GAG), and their interactions with chemokines are accountable for various diseases. To realize the underlying mechanism of such complex biological phenomena at a molecular level and their application in rational drug design, a study on conformations and dynamics of CSs is necessary. To explore this, in this study, we performed a series of atomistic molecular dynamics (MD) simulations with different sulfated variants of octadecasaccharide CS, like CS-C, CS-E, and CS-T, in their free forms and when bound to the protein chemokine CXCL8 dimer in an aqueous medium. The calculated binding free energy of CSs with the CXCL8 dimer is favorable, and the degree of sulfation favors the complexation process further with prominent hydrophobic and hydrogen-bonded interactions. We find that the recognition is associated with the configurational entropy loss of the CS molecules as calculated from the Gaussian mixture approach, which supports that the degree of sulfation regulates the process. Cluster analysis through the k -means algorithm and end-to-end distance measurement revealed that although the free CS molecules adopted linear conformations, the nonlinear conformations during binding with protein were noted. Adaptation of nonlinear forms in the bound forms is noteworthy for the less-sulfated CS-C and CS-E. Apart from favorable 4 C 1 conformations, the occasional appearance of skew-boat forms from the free-energy map of ring pucker for the GlcUA unit was observed, which remains unaffected by the sulfation. We find that during recognition, the average relaxation time of intra-CS and inter-CS-CXCL8 hydrogen bonds (HBs) is about a magnitude lesser than that of CS-water HBs, most prominent on the involvement of higher sulfated CS-T analogues. The translational motion of surrounded water molecules in CSs exhibited sublinear diffusion, and the degree of sublinearity increases around the heavily sulfated molecules due to the hindrance created by them as well as the presence of the chemokine and exhibited markedly slow heterogeneous diffusion.
Keyphrases
  • molecular dynamics
  • emergency department
  • single molecule
  • ionic liquid
  • deep learning
  • binding protein
  • gene expression
  • single cell
  • mass spectrometry
  • high speed
  • high density