Login / Signup

Three J-proteins impact Hsp104-mediated variant-specific prion elimination: a new critical role for a low-complexity domain.

Scott E BergerAnna M NolteErina KamiyaJustin K Hines
Published in: Current genetics (2019)
Prions are self-propagating protein isoforms that are typically amyloid. In Saccharomyces cerevisiae, amyloid prion aggregates are fragmented by a trio involving three classes of chaperone proteins: Hsp40s, also known as J-proteins, Hsp70s, and Hsp104. Hsp104, the sole Hsp100-class disaggregase in yeast, along with the Hsp70 Ssa and the J-protein Sis1, is required for the propagation of all known amyloid yeast prions. However, when Hsp104 is ectopically overexpressed, only the prion [PSI+] is efficiently eliminated from cell populations via a highly debated mechanism that also requires Sis1. Recently, we reported roles for two additional J-proteins, Apj1 and Ydj1, in this process. Deletion of Apj1, a J-protein involved in the degradation of sumoylated proteins, partially blocks Hsp104-mediated [PSI+] elimination. Apj1 and Sis1 were found to have overlapping functions, as overexpression of one compensates for loss of function of the other. In addition, overexpression of Ydj1, the most abundant J-protein in the yeast cytosol, completely blocks Hsp104-mediated curing. Yeast prions exhibit structural polymorphisms known as "variants"; most intriguingly, these J-protein effects were only observed for strong variants, suggesting variant-specific mechanisms. Here, we review these results and present new data resolving the domains of Apj1 responsible, specifically implicating the involvement of Apj1's Q/S-rich low-complexity domain.
Keyphrases
  • heat shock protein
  • heat shock
  • heat stress
  • saccharomyces cerevisiae
  • binding protein
  • gene expression
  • transcription factor
  • cell proliferation
  • dna methylation
  • artificial intelligence