Login / Signup

A Proof-of-Concept Study: Simple and Effective Detection of P and T Waves in Arrhythmic ECG Signals.

Mohamed ElgendiMarianna MeoDerek Abbott
Published in: Bioengineering (Basel, Switzerland) (2016)
A robust and numerically-efficient method based on two moving average filters, followed by a dynamic event-related threshold, has been developed to detect P and T waves in electrocardiogram (ECG) signals as a proof-of-concept. Detection of P and T waves is affected by the quality and abnormalities in ECG recordings; the proposed method can detect P and T waves simultaneously through a unique algorithm despite these challenges. The algorithm was tested on arrhythmic ECG signals extracted from the MIT-BIH arrhythmia database with 21,702 beats. These signals typically suffer from: (1) non-stationary effects; (2) low signal-to-noise ratio; (3) premature atrial complexes; (4) premature ventricular complexes; (5) left bundle branch blocks; and (6) right bundle branch blocks. Interestingly, our algorithm obtained a sensitivity of 98.05% and a positive predictivity of 97.11% for P waves, and a sensitivity of 99.86% and a positive predictivity of 99.65% for T waves. These results, combined with the simplicity of the method, demonstrate that an efficient and simple algorithm can suit portable, wearable, and battery-operated ECG devices.
Keyphrases
  • heart rate
  • heart rate variability
  • machine learning
  • deep learning
  • emergency department
  • loop mediated isothermal amplification
  • atrial fibrillation
  • air pollution
  • real time pcr
  • quality improvement