Login / Signup

Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress.

Yuchen QuKazuma SakodaHiroshi FukayamaEri KondoYuij SuzukiAmane MakinoIchiro TerashimaWataru Yamori
Published in: Plant, cell & environment (2021)
Global warming threatens food security by decreasing crop yields through damage to photosynthetic systems, especially Rubisco activation. We examined whether co-overexpression of Rubisco and Rubisco activase improves the photosynthetic and growth performance of rice under high temperatures. We grew three rice lines-the wild-type (WT), a Rubisco activase-overexpressing line (oxRCA) and a Rubisco- and Rubisco activase-co-overexpressing line (oxRCA-RBCS)-and analysed photosynthesis and biomass at 25 and 40°C. Compared with the WT, the Rubisco activase content was 153% higher in oxRCA and 138% higher in oxRCA-RBCS, and the Rubisco content was 27% lower in oxRCA and similar in oxRCA-RBCS. The CO2 assimilation rate (A) of WT was lower at 40°C than at 25°C, attributable to Rubisco deactivation by heat. On the other hand, that of oxRCA and oxRCA-RBCS was maintained at 40°C, resulting in higher A than WT. Notably, the dry weight of oxRCA-RBCS was 26% higher than that of WT at 40°C. These results show that increasing the Rubisco activase content without the reduction of Rubisco content could improve yield and sustainability in rice at high temperature.
Keyphrases
  • heat stress
  • cell proliferation
  • physical activity
  • wastewater treatment
  • high temperature
  • risk assessment
  • wild type