Strategies to Improve the Synaptic Characteristics of Oxygen-Based Electrochemical Random-Access Memory Based on Material Parameters Optimization.
Jongwon LeeRevannath Dnyandeo NikamMyounghoon KwakHyunsang HwangPublished in: ACS applied materials & interfaces (2022)
Oxygen-based electrochemical random-access memories (O-ECRAMs) are promising synaptic devices for neuromorphic applications because of their near-ideal synaptic characteristics and compatibility with complementary metal-oxide-semiconductor processes. However, the correlation between material parameters and synaptic properties of O-ECRAM devices has not yet been elucidated. Here, we propose the critical design parameters to fabricate an ideal ECRAM device. Based on the experimental data and simulation results, it is revealed that consistent ion supply from the electrolyte and rapid ion diffusion in the channel are critical factors for ideal synaptic characteristics. To optimize these parameters, crystalline WO 2.7 exhibiting fast ion diffusivity and ZrO 1.7 exhibiting an appropriate ion conduction energy barrier (1.1 eV) are used as a channel and an electrolyte, respectively. As a result, synaptic characteristics with near-ideal weight-update linearity in the nanosiemens conductance range are achieved. Finally, a selector-less O-ECRAM device is integrated into a 2 × 2 array, and high recognition accuracy (94.83%) of the Modified National Institute of Standards and Technology pattern is evaluated.