Large Range Atomic Force Microscopy with High Aspect Ratio Micropipette Probe for Deep Trench Imaging.
Huiyao ShiKaixuan WangSi TangShenghang ZhaiJialin ShiChanmin SuLianqing LiuPublished in: Small methods (2023)
Atomic force microscopy (AFM) has been adopted in both industry and academia for high-fidelity, full-profile topographic characterization. Typically, the tiny tip of the cantilever and the limited traveling range of the scanner restrict AFM measurement to relatively flat samples (recommend 1 µm). The primary objective of this work is to address these limitations using a large-range AFM (measuring height >10 µm) system consisting of a novel repairable high aspect ratio probe (HARP) with a nested-proportional-integral-derivative (nested-PID) AFM system. The HARP is fabricated using a reliable, cost-efficient bench-top process. The tip is then fused by pulling the end of the micropipette cantilever with a length up to hundreds of micrometers and a tip diameter of 30 nm. The design, simulation, fabrication, and performance of the HARP are described herein. This instrument is then tested using polymer trenches which reveals superior image fidelity compared to standard silicon tips. Finally, a nested-PID system is developed and employed to facilitate 3D characterization of 50-µm-step samples. The results demonstrate the efficacy of the proposed bench-top technique for the fabrication of low-cost, simple HAR AFM probes that facilitate the imaging of samples with deep trenches.