Login / Signup

Temperature Induced Dynamical Transition of Biomolecules in Polarizable and Nonpolarizable TIP3P Water.

Arup Kumar PathakTusar Bandyopadhyay
Published in: Journal of chemical theory and computation (2019)
Temperature induced dynamical transition (DT), associated with a sharp rise in molecular flexibility, is well-known to be exhibited between 270 and 280 K in glycerol to 200-230 K in hydrated biomolecules and is controlled by diffusivity (viscosity) of the solvation layer. In the molecular dynamics (MD) community, especially for water as a solvent, this has been an intense area of research despite decades of investigations. However, in general, water in these studies is described by empirical nonpolarizable force fields in which electronic polarizability is treated implicitly with effective charges and related parameters. This might have led to the present trait of discovery that DTs of biomolecules, irrespective of the potential functions for water models used, occur within a narrow band of temperature variation (30-40 K). Whereas a water molecule in a biomolecular surface and one in bulk are polarized differently, therefore explicit treatment of water polarizability would be a powerful approach toward the treatment of hydration water, believed to cause the DT manifestation. Using MD simulations, we investigated the effects of polarizable water on the DT of biomolecules and the dynamic properties of hydration water. We chose two types of solutes: globular protein (lysozyme) and more open and flexible RNAs (a hairpin and a riboswitch) with different natures of hydrophilic sites than proteins in general. We found that the characteristic temperature of DT ( TDT) for the solutes in polarizable water is always higher than that in its nonpolarizable counterpart. In particular, for RNAs, the variations are found to be ∼45 K between the two water models, whereas for the more compact lysozyme, it is only ∼4 K. The results are discussed in light of the enormous increase in relaxation times of a liquid upon cooling in the paradigm of dynamic switchover in hydration water with liquid-liquid phase transition, derived from the existence of the second critical point. Our result supports the idea that structures of biomolecules and their interactions with the hydration water determines TDT and provides evidence for the decisive role of polarizable water on the onset of DT, which has been hitherto ignored.
Keyphrases