Login / Signup

Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands.

Fabian BrüningHaruki NagaeDaniel KächKazushi MashimaAntonio Togni
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
The asymmetric hydrogenation of 2,2,2-trifluoroacetophenones and aryl perfluoroalkyl ketones was developed using a unique, well-defined chloride-bridged dinuclear rhodium(III) complex bearing Josiphos-type diphosphine ligands. These complexes were prepared from [RhCl(cod)]2 , Josiphos ligands, and hydrochloric acid. As catalyst precursors, they allow for the efficient and enantioselective synthesis (up to 99 % ee) of chiral secondary alcohols with perfluoroalkyl groups. This system does not require an activating base for the hydrogenation of 2,2,2-trifluoroacetophenones. Additionally, the enantioselective C=O hydrogenations of 2-phenyl-3-(haloacetyl)-indoles, a class of privileged structures in medicinal chemistry, is reported for the first time.
Keyphrases
  • room temperature
  • ionic liquid
  • signaling pathway
  • high resolution
  • solid state
  • highly efficient
  • gold nanoparticles
  • carbon dioxide
  • drug discovery