Login / Signup

Designing electrolytes with high solubility of sulfides/disulfides for high-energy-density and low-cost K-Na/S batteries.

Liying TianZhenghao YangShiyi YuanTye MilazzoQian ChengSyed RasoolWenrui LeiWenbo LiYucheng YangTianwei JinShengyu CongJoseph Francis WildYong-Hua DuTengfei LuoDonghui LongYuan Yang
Published in: Nature communications (2024)
Alkaline metal sulfur (AMS) batteries offer a promising solution for grid-level energy storage due to their low cost and long cycle life. However, the formation of solid compounds such as M 2 S 2 and M 2 S (M = Na, K) during cycling limits their performance. Here we unveil intermediate-temperature K-Na/S batteries utilizing advanced electrolytes that dissolve all polysulfides and sulfides (K 2 S x , x = 1-8), significantly enhancing reaction kinetics, specific capacity, and energy density. These batteries achieve near-theoretical capacity (1655 mAh g -1 sulfur) at 75 °C with a 1 M sulfur concentration. At a 4 M sulfur concentration, they deliver 830 mAh g -1 at 2 mA cm -2 , retaining 71% capacity after 1000 cycles. This new K-Na/S battery with specific energy of 150-250 Wh kg -1  only employs earth-abundant elements, making it attractive for long-duration energy storage.
Keyphrases
  • low cost
  • solid state
  • ionic liquid
  • ion batteries