Login / Signup

The locomotor kinematics and ground reaction forces of walking giraffes.

Christopher BasuAlan M WilsonJohn R Hutchinson
Published in: The Journal of experimental biology (2019)
Giraffes (Giraffa camelopardalis) possess specialised anatomy. Their disproportionately elongate limbs and neck confer recognised feeding advantages, but little is known about how their morphology affects locomotor function. In this study, we examined the stride parameters and ground reaction forces from three adult giraffes in a zoological park, across a range of walking speeds. The patterns of GRFs during walking indicate that giraffes, similar to other mammalian quadrupeds, maintain a forelimb-biased weight distribution. The angular excursion of the neck has functional links with locomotor dynamics in giraffes, and was exaggerated at faster speeds. The horizontal accelerations of the neck and trunk were out of phase compared with the vertical accelerations, which were intermediate between in and out of phase. Despite possessing specialised morphology, giraffes' stride parameters were broadly predicted from dynamic similarity, facilitating the use of other quadrupedal locomotion models to generate testable hypotheses in giraffes.
Keyphrases
  • spinal cord injury
  • lower limb
  • physical activity
  • young adults