Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
Ruoxiao XieWenchen ZhengLiandi GuanYongjian AiQionglin LiangPublished in: Small (Weinheim an der Bergstrasse, Germany) (2019)
Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques. In this review, the advantages of hydrogels on building engineered vascularized tissues are discussed and recent engineering techniques for building perfusable microchannels in hydrogels are summarized, including micromolding, 3D printing, and microfluidic spinning. Furthermore, the applications of these perfusable hydrogels in manufacturing organ-on-a-chip devices and transplantable engineered tissues are highlighted. Finally, current challenges in recapitulating the complexity of native vascular systems are discussed and future development of vascularized tissues is prospected.