Login / Signup

Reagent-Pencil and Paper Spray Mass Spectrometry: A Convenient Combination for Selective Analyses in Complex Matrixes.

Adriano AquinoGiovana Mayrink Alves PereiraNicolò DossiEvandro PiccinRodinei Augusti
Published in: Journal of the American Society for Mass Spectrometry (2020)
The recent developments on fieldable miniature mass spectrometers require efforts to produce easy-to-use and portable alternative tools to assist in point-of-care analysis. In this paper, the reagent-pencil (RP) technology, which has been used for solvent-free deposition of reagents in paper-based microfluidics, was combined with paper spray ionization mass spectrometry (PS-MS). In this approach, named RP-PS-MS, the PS triangular piece of paper was written with the reagent pencil, consisting of mixtures of graphite and bentonite (used as a support) and a reactive compound, and allowed to react with a given analyte from a sample matrix selectively. We conducted typical applications as proof-of-principles to verify the methodology's general usefulness in detecting small organic molecules in distinct samples. Hence, various aldehydes (2-furaldehyde, valeraldehyde, and benzaldehyde) in spiked cachaça samples (an alcoholic drink produced from fermentation/distillation of sugarcane juice) were promptly detected using a reagent pencil doped with 4-aminophenol (the reactive compound). Similarly, we recognized typical ginsenosides and triacylglycerols (TAGs) in ginseng aqueous infusions and soybean oil samples, respectively, using lithium chloride as the reactive compound. The results indicate that the reagent-pencil methodology is compatible with PS-MS and provides an easy and fast way to detect target analytes in complex samples. The advantage over the usual solution-based deposition of reagents lies in the lack of preparation or carrying different specific solutions for special applications, which can simplify operation, especially in point-of-care analysis with fieldable mass spectrometers.
Keyphrases
  • mass spectrometry
  • liquid chromatography
  • gas chromatography
  • multiple sclerosis
  • ms ms
  • ionic liquid
  • high performance liquid chromatography
  • high resolution