Login / Signup

On-site preparation of sandwich plasmonic coupled SERS tape toward pesticide residue determination on food surface.

Wenhan ZhengMin LiZhengping ZhangZhixuan LouYanbin LiuYuanyuan YaoLifen ChenBingyong LinYueliang WangLonghua Guo
Published in: Mikrochimica acta (2024)
A sandwich plasmonic coupled surface enhanced Raman spectroscopy (SERS) tape is proposed prepared by peeling the chemical printed silver nanocorals (AgNCs) from Cu sheet with adhesive tape, which can sample targets from food surface and sandwich them between substrates and Cu sheet for SERS detection. The solid-to-solid transformation method for fabricating SERS tapes can effectively avoid the weakening of tape stickiness during the preparation process. The sandwich plasmonic coupled structure of AgNC substrate, targets, and Cu sheet display excellent SERS activity (EF = 1.62 × 10 7 ) for sensitive determination of analytes. In addition, due to the high heat conductivity of Cu sheet, the thermal effect of laser irradiation during SERS detection cannot damage the AgNC tapes, which ensures the reproducibility of subsequent quantification. The sandwich plasmonic coupled SERS tape is demonstrated to quantify malachite green (MG) and methyl parathion (MP) with good linear coefficients (> 0.98) by two typical calibration plots under different concentration ranges. The limit of detection (LOD) of the method is 0.17 ng/cm 2 and 0.48 μg/cm 2 (S/N = 3) for MG and MP. This method can realize the quantitative determination of MP and MG on the surface of fruits and fish scale with recoveries of 93-113%. The satisfactory detection results demonstrate the proposed sandwich plasmonic coupled AgNC tape can be successfully applied to SERS-based point-of-care testing (POCT) for pesticide residue determination, which will provide a new path for designing and constructing SERS tapes.
Keyphrases