Cu Single-Atom Nanozyme-Mediated Electrochemiluminescence Biosensor for Highly Sensitive Detection of MicroRNA-622.
Ruifang LiuChengxiang LiLongfei ZhuShujing WangDandan LiuLi XieShenguang GeJinghua YuPublished in: Analytical chemistry (2024)
MicroRNA (miRNA) detection is a critical aspect of disease diagnosis, and recent studies indicate that miRNA-622 could be a potential target for lung cancer. Herein, Cu single atoms were anchored on graphitic carbon nitride (Cu SAs@CN) as a coreaction accelerator applied in luminol-H 2 O 2 system, thereby establishing an efficient and sensitive electrochemiluminescence (ECL) biosensor for miRNA-622 detection. Cu SAs@CN was explored to possess excellent enzyme-like activities that promote the generation of abundant reactive oxygen species, which amplified ECL emission. Meanwhile, in order to improve the accuracy and sensitivity for miRNA-622 detection, the highly specific trans-cleavage ability of CRISPR/Cas12a was combined with a catalytic hairpin assembly strategy. Therefore, an ECL biosensor for miRNA-622 detection was systematically constructed as a proof of concept, achieving an ultralow limit of detection of 1.09 fM, and the feasibility was demonstrated in human serum samples. The findings of this research provide a promising strategy to enhance the ECL response using versatile single-atom catalysts, thus advancing the development of ECL biosensing applications.