Login / Signup

Sol-Gel Synthesis of Metal-Phenolic Coordination Spheres and Their Derived Carbon Composites.

Jing WeiGen WangFeng ChenMin BaiYan LiangHuanting WangDongyuan ZhaoYongxi Zhao
Published in: Angewandte Chemie (International ed. in English) (2018)
A formaldehyde-assisted metal-ligand crosslinking strategy is used for the synthesis of metal-phenolic coordination spheres based on sol-gel chemistry. A range of mono-metal (Co, Fe, Al, Ni, Cu, Zn, Ce), bi-metal (Fe-Co, Co-Zn) and multi-metal (Fe-Co-Ni-Cu-Zn) species can be incorporated into the frameworks of the colloidal spheres. The formation of coordination spheres involves the pre-crosslinking of plant polyphenol (such as tannic acid) by formaldehyde in alkaline ethanol/water solvents, followed by the aggregation assembly of polyphenol oligomers via metal-ligand crosslinking. The coordination spheres can be used as sensors for the analysis of nucleic acid variants with single-nucleotide discrimination, and a versatile precursor for electrode materials with high electrocatalytic performance.
Keyphrases
  • metal organic framework
  • heavy metals
  • nucleic acid
  • gold nanoparticles
  • risk assessment
  • gene expression
  • quantum dots
  • hyaluronic acid
  • wound healing