Evaluation of Physico-Chemical Characteristics of Cement Superplasticizer Based on Polymelamine Sulphonate.
Asta JudzentieneAgnė ZdaniauskienėIlja IgnatjevRūta DruteikienėPublished in: Materials (Basel, Switzerland) (2024)
Cementitious materials are used to construct an engineered barrier in repositories for radioactive waste. The cement matrix may contain a variety of organic compounds, some of which are polymeric admixtures used as plasticizers. Superplasticizers (SPs) are highly effective organic cement additives for reducing water amount, increasing workability, homogeneity, plasticity and the non-segregation of mortars and grouts, improving mechanical properties and resistance to destructive environments. SPs in cement could have an impact on the long-term safety of the disposals of radioactive waste. These organic agents can leach from the cementitious matrix into groundwater and may affect the migration behaviour of radionuclides. The detailed chemical composition and other characteristics of the cement (CEM I 42.5 R, Sweden) used for the leaching experiments were evaluated. It contained mainly CaO (52.51 ± 1.37, %), and the surface area of the cement particles was 13.2 ± 1.3 m 2 /g. An insignificant increase in pH (from 12.6 ± 0.1 to 12.8 ± 0.1) was observed for the leachates over 10 days. A commercially available cement superplasticizer based on polymelamine sulphonate (PMS) Peramin SMF10 (Peramin AB, Sweden) was chosen for the research. The product's chemical composition was analysed using wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, while other physico-chemical properties of the PMS superplasticizer were assessed by Raman spectroscopy and thermo-gravimetric analysis. In aqueous solutions and powders of PMS, the same most intensive features were observed at 774 cm -1 (ring out-of-plane deformation), 977 cm -1 (C-N-C bending, SO stretching) and 1055 cm -1 (C-N=C bending) in the Raman spectra. At up to 270 °C, the polymer was thermally stable. Raman and UV/Vis spectroscopies were used to assess the rate of the alkaline degradation of PMS superplasticizer in different aqueous solutions. No changes were observed in the hydrolytic solutions with any of the above analytical methods over a period of 3 years. The results obtained revealed a good thermal and chemical stability (in highly alkaline media, pH = 9.9-12.9) of the PMS polymer.