Login / Signup

A diet-change modulates the previously established bacterial gut community in juvenile brown trout (Salmo trutta).

Stéphanie C MichlMatt BeyerJenni-Marie RattenMario HaslerJulie LaRocheCarsten Schulz
Published in: Scientific reports (2019)
The aim of the present study was to investigate the impact of dietary plant proteins on the gut microbiome of first feeding brown trout (Salmo trutta) reproduced from wild stocks and to evaluate whether the initial microbiome of brown trout fry can be permanently manipulated by the first feeding diet. Therefore, brown trout fry was fed diets based on either 0%, 50% or 90% plant-derived proteins from first feeding onwards and via 16S rRNA gene sequencing a strong dietary influence on the bacterial gut community on phylum and order level was detected. Proteobacteria and Fusobacteria were significantly enhanced when fishmeal was integrated into the experimental diet, whereas plant-derived proteins significantly promoted Firmicutes and Bacteroidetes. In order to evaluate whether the first feeding diet had a permanent effect on the initially established microbial gut community of juvenile brown trout, a cross-over diet-change was applied 61 days post first feeding. 48 days after the diet-change, the gut microbiome of all dietary groups was significantly different from the one initially established after first feeding. Moreover, the first feeding diet had no statistically significant influence on the gut microbiome after the diet-change, demonstrating no permanent effect on the gut microbiome formation.
Keyphrases
  • weight loss
  • physical activity
  • healthcare
  • mental health
  • transcription factor
  • cell wall
  • genetic diversity