An exploratory study of functional brain activation underlying response inhibition in major depressive disorder and borderline personality disorder.
Cody CaneDean CarconeKatherine GardhouseAndy C H LeeAnthony C RuoccoPublished in: PloS one (2023)
Cognitive control is associated with impulsive and harmful behaviours, such as substance abuse and suicidal behaviours, as well as major depressive disorder (MDD) and borderline personality disorder (BPD). The association between MDD and BPD is partially explained by shared pathological personality traits, which may be underpinned by aspects of cognitive control, such as response inhibition. The neural basis of response inhibition in MDD and BPD is not fully understood and could illuminate factors that differentiate between the disorders and that underlie individual differences in cross-cutting pathological traits. In this study, we sought to explore the neural correlates of response inhibition in MDD and BPD, as well as the pathological personality trait domains contained in the ICD-11 personality disorder model. We measured functional brain activity underlying response inhibition on a Go/No-Go task using functional magnetic resonance imaging in 55 female participants recruited into three groups: MDD without comorbid BPD (n = 16), MDD and comorbid BPD (n = 18), and controls with neither disorder (n = 21). Whereas response-inhibition-related activation was observed bilaterally in frontoparietal cognitive control regions across groups, there were no group differences in activation or significant associations between activation in regions-of-interest and pathological personality traits. The findings highlight potential shared neurobiological substrates across diagnoses and suggest that the associations between individual differences in neural activation and pathological personality traits may be small in magnitude. Sufficiently powered studies are needed to elucidate the associations between the functional neural correlates of response inhibition and pathological personality trait domains.