Integrating binary mixtures of nanoparticles (NPs) into well-defined superstructures gives rise to novel collective properties depending on the shapes and individual properties of both species. In this paper, we studied the entropy-driven formation of binary superlattices assembled from polymer-tethered nanorods and nanospheres. The results indicated that the conformational entropy of the polymer chains and the mixing entropy of the nanorods and nanospheres are two parameters that determine the formation of binary superlattices.