Login / Signup

Enhanced Chiral Sensing with Dielectric Nanoresonators.

Jose García-GuiradoMikael SvedendahlJoaquim PuigdollersRomain Quidant
Published in: Nano letters (2019)
Chiro-sensitive molecular detection is highly relevant as many biochemical compounds, the building blocks of life, are chiral. Optical chirality is conventionally detected through circular dichroism (CD) in the UV range, where molecules naturally absorb. Recently, plasmonics has been proposed as a way to boost the otherwise very weak CD signal and translate it to the visible/NIR range, where technology is friendlier. Here, we explore how dielectric nanoresonators can contribute to efficiently differentiate molecular enantiomers. We study the influence of the detuning between electric (ED) and magnetic dipole (MD) resonances in silicon nanocylinders on the quality of the CD signal. While our experimental data, supported by numerical simulations, demonstrate that dielectric nanoresonators can perform even better than their plasmonic counterpart, exhibiting larger CD enhancements, we do not observe any significant influence of the optical chirality.
Keyphrases
  • high resolution
  • emergency department
  • nk cells
  • molecular dynamics
  • ionic liquid
  • capillary electrophoresis
  • photodynamic therapy
  • artificial intelligence
  • data analysis
  • tandem mass spectrometry