Harnessing Atomically Dispersed Cobalt for the Reductive Catalytic Fractionation of Lignocellulose.
Xiancheng LiRumin MaXueying GaoHelong LiShuizhong WangGuoyong SongPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
The reductive catalytic fractionation (RCF) of lignocellulose, considering lignin valorization at design time, has demonstrated the entire utilization of all lignocellulose components; however, such processes always require catalysts based on precious metals or high-loaded nonprecious metals. Herein, the study develops an ultra-low loaded, atomically dispersed cobalt catalyst, which displays an exceptional performance in the RCF of lignocellulose. An approximately theoretical maximum yield of phenolic monomers (48.3 wt.%) from lignin is realized, rivaling precious metal catalysts. High selectivity toward 4-propyl-substituted guaiacol/syringol facilitates their purification and follows syntheses of highly adhesive polyesters. Lignin nanoparticles (LNPs) are generated by simple treatment of the obtained phenolic dimers and oligomers. RCF-resulted carbohydrate pulp are more obedient to enzymatic hydrolysis. Experimental studies on lignin model compounds reveal the concerted cleavage of C α -O and C β -O pathway for the rupture of β-O-4 structure. Overall, the approach involves valorizing products derived from lignin biopolymer, providing the opportunity for the comprehensive utilization of all components within lignocellulose.