Login / Signup

Reaction Cycling for Kinetic Analysis in Flow.

Ryan J SullivanStephen G Newman
Published in: The Journal of organic chemistry (2020)
A reactor capable of efficiently collecting kinetic data in flow is presented. Conversion over time data is obtained by cycling a discrete reaction slug back and forth between two residence coils, with analysis performed each time the solution is passed between the two. In contrast to a traditional steady-state continuous flow system, which requires upward of 5× the total reaction time to obtain reaction progress data, this design achieves much higher efficiency by collecting all data during a single reaction. In combination with minimal material consumption (reactions performed in 300 μL slugs), this represents an improvement in efficiency for typical kinetic experimentation in batch as well. Application to kinetic analysis of a wide variety of transformations (acylation, SNAr, silylation, solvolysis, Pd catalyzed C-S cross-coupling and cycloadditions) is demonstrated, highlighting both the versatility of the reactor and the benefits of performing kinetic analysis as a routine part of reaction optimization/development. Extension to the monitoring of multiple reactions simultaneously is also realized by operating the reactor with multiple reaction slugs at the same time.
Keyphrases
  • electronic health record
  • big data
  • wastewater treatment
  • electron transfer
  • magnetic resonance
  • high intensity
  • machine learning
  • artificial intelligence
  • contrast enhanced