Evaluating the impact of anatomical and physiological variability on human equivalent doses using PBPK models.
Celia M SchachtAnnabel E MeadeAmanda S BernsteinBidya PrasadPaul M SchlosserHien T TranDustin F KapraunPublished in: Toxicological sciences : an official journal of the Society of Toxicology (2024)
Addressing human anatomical and physiological variability is a crucial component of human health risk assessment of chemicals. Experts have recommended probabilistic chemical risk assessment paradigms in which distributional adjustment factors are used to account for various sources of uncertainty and variability, including variability in the pharmacokinetic behavior of a given substance in different humans. In practice, convenient assumptions about the distribution forms of adjustment factors and human equivalent doses (HEDs) are often used. Parameters such as tissue volumes and blood flows are likewise often assumed to be lognormally or normally distributed without evaluating empirical data for consistency with these forms. In this work, we performed dosimetric extrapolations using physiologically based pharmacokinetic (PBPK) models for dichloromethane (DCM) and chloroform that incorporate uncertainty and variability to determine if the HEDs associated with such extrapolations are approximately lognormal and how they depend on the underlying distribution shapes chosen to represent model parameters. We accounted for uncertainty and variability in PBPK model parameters by randomly drawing their values from a variety of distribution types. We then performed reverse dosimetry to calculate HEDs based on animal points of departure for each set of sampled parameters. Corresponding samples of HEDs were tested to determine the impact of input parameter distributions on their central tendencies, extreme percentiles, and degree of conformance to lognormality. This work demonstrates that the measurable attributes of human variability should be considered more carefully and that generalized assumptions about parameter distribution shapes may lead to inaccurate estimates of extreme percentiles of HEDs.