Login / Signup

Full Thermoelectric Characterization of Stoichiometric Electrodeposited Thin Film Tin Selenide (SnSe).

Matthew Richard BurtonConnor A BoyleTianjun LiuJames McGettrickIris NandhakumarOliver FenwickMatthew J Carnie
Published in: ACS applied materials & interfaces (2020)
Tin selenide (SnSe) has attracted much attention in the thermoelectric community since the discovery of the record figure of merit (ZT) of 2.6 in single crystal tin selenide in 2014. There have been many reports since of the thermoelectric characterization of SnSe synthesized or manufactured by several methods, but so far none of these have concerned the electrodeposition of SnSe. In this work, stoichiometric SnSe was successfully electrodeposited at -0.50 V vs SCE as shown by EDX, XPS, UPS, and XRD. The full ZT of the electrodeposits were then measured. This was done by both a delamination technique to measure the Seebeck coefficient and electrical conductivity which showed a peak power factor of 4.2 and 5.8 μW m-1 K-2 for the as deposited and heat-treated films, respectively. A novel modified transient 3ω method was used to measure the thermal conductivity of the deposited films on the deposition substrate. This revealed the thermal conductivity to be similar to the ultralow thermal conductivity of single crystal SnSe, with a value of 0.34 W m-1 K-1 being observed at 313 K.
Keyphrases
  • oxide nanoparticles
  • mental health
  • small molecule
  • magnetic resonance
  • working memory
  • single cell
  • heat stress
  • computed tomography
  • adverse drug
  • blood brain barrier
  • carbon nanotubes