The impact of paediatric epilepsy and co-occurring neurodevelopmental disorders on functional brain networks in wake and sleep.
Leandro JungesDaniel GalvisAlice WinsorGrace TreadwellCaroline RichardsStefano SeriSamuel JohnsonJohn R TerryAndrew P BagshawPublished in: PloS one (2024)
Epilepsy is one of the most common neurological disorders in children. Diagnosing epilepsy in children can be very challenging, especially as it often coexists with neurodevelopmental conditions like autism and ADHD. Functional brain networks obtained from neuroimaging and electrophysiological data in wakefulness and sleep have been shown to contain signatures of neurological disorders, and can potentially support the diagnosis and management of co-occurring neurodevelopmental conditions. In this work, we use electroencephalography (EEG) recordings from children, in restful wakefulness and sleep, to extract functional connectivity networks in different frequency bands. We explore the relationship of these networks with epilepsy diagnosis and with measures of neurodevelopmental traits, obtained from questionnaires used as screening tools for autism and ADHD. We explore differences in network markers between children with and without epilepsy in wake and sleep, and quantify the correlation between such markers and measures of neurodevelopmental traits. Our findings highlight the importance of considering the interplay between epilepsy and neurodevelopmental traits when exploring network markers of epilepsy.
Keyphrases
- functional connectivity
- resting state
- autism spectrum disorder
- young adults
- physical activity
- working memory
- attention deficit hyperactivity disorder
- genome wide
- sleep quality
- emergency department
- intensive care unit
- gene expression
- congenital heart disease
- intellectual disability
- white matter
- temporal lobe epilepsy
- oxidative stress
- cerebral ischemia
- multiple sclerosis
- depressive symptoms
- electronic health record
- brain injury
- deep learning
- high density