Login / Signup

Study on a new manner of the magnetization switching actuated by a unidirectional pulse current.

K LiJ FengXiaojuan YuanL GanZhihong LuRui Xiong
Published in: Nanotechnology (2021)
A new writing scheme with a unidirectional pulse current is proposed for spin transfer torque (STT) based magnetic random-access memory (MRAM). To investigate the feasibility of the writing scheme, bilayered nano-pillars composed of a soft layer with small in-plane shape anisotropy and a hard layer with either large perpendicular anisotropy (PMA) or in-plane anisotropy (IMA) are designed and their switching behaviors are studied. It is found that in either type of bilayered nano-pillars, with the aid of the attached hard layer, the magnetization of the soft layer can be switched back and forth under a unidirectional pulse current. In an IMA/IMA nano-pillar, the magnetization of the free layer (FL) can achieve excellent alignment, which is in contrast to the IMA/PMA nano-pillar. By optimizing the dimensions and magnetic parameters of the IMA/IMA nano-pillar, a decently low switching current density (4.3 × 1011A m-2) and ultrashort switching time (<1 ns) can be reached. Based on these results, the unidirectional writing scheme is practical if an IMA/IMA bilayer is used to replace the FL in a magnetic tunnel junction. Considering that a unidirectional writing scheme can enable the application of materials with high spin polarization such as half metals, and avoid the injection of writing current into junction using a special design, it may be very promising for STT-MRAM.
Keyphrases