Login / Signup

Smart-Responsive Multifunctional Therapeutic System for Improved Regenerative Microenvironment and Accelerated Bone Regeneration via Mild Photothermal Therapy.

Minhao WuHuifan LiuDan LiYufan ZhuPing WuZhe ChenFeixiang ChenYun ChenZhouming DengLin Cai
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
The treatment of bone defects remains a substantial clinical challenge due to the lack of spatiotemporal management of the immune microenvironment, revascularization, and osteogenic differentiation. Herein, deferoxamine (DFO)-loaded black phosphorus nanosheets decorated by polydopamine layer are prepared (BPPD) and compounded into gelatin methacrylate/sodium alginate methacrylate (GA) hybrid hydrogel as a smart-responsive therapeutic system (GA/BPPD) for accelerated bone regeneration. The BPPD nanocomposites served as bioactive components and near-infrared (NIR) photothermal agents, which conferred the hydrogel with excellent NIR/pH dual-responsive properties, realizing the stimuli-responsive release of DFO and PO 4 3 - during bone regeneration. Under the action of NIR-triggered mild photothermal therapy, the GA/BPPD hydrogel exhibited a positive effect on promoting osteogenesis and angiogenesis, eliminating excessive reactive oxygen species, and inducing macrophage polarization to the M2 phenotype. More significantly, through macrophage M2 polarization-induced osteoimmune microenvironment, this hydrogel platform could also drive functional cytokine secretion for enhanced angiogenesis and osteogenesis. In vivo experiments further demonstrated that the GA/BPPD system could facilitate bone healing by attenuating the local inflammatory response, increasing the secretion of pro-healing factors, stimulating endogenous cell recruitment, and accelerating revascularization. Collectively, the proposed intelligent photothermal hydrogel platform provides a promising strategy to reshape the damaged tissue microenvironment for augmented bone regeneration.
Keyphrases