Block Copolymer Self-assembly: Exploitation of Hydrogen Bonding for Nanoparticle Morphology Control via Incorporation of Triazine Based Comonomers by RAFT Polymerization.
Farah HaqueSteven W ThompsonFumi IshizukaRhiannon P KuchelDharmendra SinghGangadhar J SanjayanPer B ZetterlundPublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Synthesis of polymeric nanoparticles of controlled non-spherical morphology is of profound interest for a wide variety of potential applications. Self-assembly of amphiphilic diblock copolymers is an attractive bottom-up approach to prepare such nanoparticles. In the present work, RAFT polymerization is employed to synthesize a variety of poly(N,N-dimethylacrylamide)-b-poly[butyl acrylate-stat-GCB] copolymers, where GCB represents vinyl monomer containing triazine based Janus guanine-cytosine nucleobase motifs featuring multiple hydrogen bonding arrays. Hydrogen bonding between the hydrophobic blocks exert significant influence on the morphology of the resulting nanoparticles self-assembled in water. The Janus feature of the GCB moieties makes it possible to use a single polymer type in self-assembly, unlike previous work exploiting, e.g., thymine-containing polymer and adenine-containing polymer. Moreover, the strength of the hydrogen bonding interactions enables use of a low molar fraction of GCB units, thereby rendering it possible to use the present approach for copolymers based on common vinyl monomers for the development of advanced nanomaterials.